Validating Blocks: Mining Pools | Saylor Academy (2024)

Mining Pools

In this highly competitive environment, individual miners working alone (also known as solo miners) don't stand a chance. The likelihood of them finding a block to offset their electricity and hardware costs is so low that it represents a gamble, like playing the lottery. Even the fastest consumer ASIC mining system cannot keep up with commercial systems that stack tens of thousands of these chips in giant warehouses near hydroelectric powerstations. Miners now collaborate to form mining pools, pooling their hashing power and sharing the reward among thousands of participants. By participating in a pool, miners get a smaller share of the overall reward, but typically get rewarded every day, reducing uncertainty.

Let's look at a specific example. Assume a miner has purchased mining hardware with a combined hashing rate of 14,000 gigahashes per second (GH/s), or 14 TH/s. In 2017 this equipment costs approximately $2,500 USD. The hardware consumes 1375 watts (1.3 kW) of electricity when running, 33 kW-hours a day, at a cost of $1 to $2 per day at very low electricity rates. At current bitcoin difficulty, the miner will be able to solo mine a block approximately once every 4 years. How do we work out that probability? It is based on a network-wide hashing rate of 3 EH/sec (in 2017), and the miner's rate of 14 TH/sec:

…​where 210240 is the number of blocks in four years. The miner has a 98% probability of finding a block over four years, based on the global hash rate at the beginning of the period.

If the miner does find a single block in that timeframe, the payout of 6.25 bitcoin, at approximately $1,000 per bitcoin, will result in a single payout of $6,250, which will produce a net profit of about $750. However, the chance of finding a block in a 4-year period depends on the miner's luck. He might find two blocks in 4 years and make a larger profit. Or he might not find a block for 5 years and suffer a big financial loss. Even worse, the difficulty of the bitcoin Proof-of-Work algorithm is likely to go up significantly over that period, at the current rate of growth of hashing power, meaning the miner has, at most, one year to break even before the hardware is effectively obsolete and must be replaced by more powerful mining hardware. Financially this only makes sense at very low electricity cost (less than 1 cent per kW-hour) and only at very large scale.

Mining pools coordinate many hundreds or thousands of miners, over specialized pool-mining protocols. The individual miners configure their mining equipment to connect to a pool server, and specify a bitcoin address, which will receive their share of the rewards. Their mining hardware remains connected to the pool server while mining, synchronizing their efforts with the other miners. Thus, the pool miners share the effort to mine a block and then share in the rewards.

Successful blocks pay the reward to a pool bitcoin address, rather than individual miners. The pool server will periodically make payments to the miners' bitcoin addresses, once their share of the rewards has reached a certain threshold. Typically, the pool server charges a percentage fee of the rewards for providing the pool-mining service.

Miners participating in a pool split the work of searching for a solution to a candidate block, earning "shares" for their mining contribution. The mining pool sets a higher target (lower difficulty) for earning a share, typically more than 1,000 times easier than the bitcoin network's target. When someone in the pool successfully mines a block, the reward is earned by the pool and then shared with all miners in proportion to the number of shares they contributed to the effort.

Pools are open to any miner, big or small, professional or amateur. A pool will therefore have some participants with a single small mining machine, and others with a garage full of high-end mining hardware. Some will be mining with a few tens of a kilowatt of electricity, others will be running a data center consuming a megawatt of power. How does a mining pool measure the individual contributions, so as to fairly distribute the rewards, without the possibility of cheating? The answer is to use bitcoin's Proof-of-Work algorithm to measure each pool miner's contribution, but set at a lower difficulty so that even the smallest pool miners win a share frequently enough to make it worthwhile to contribute to the pool. By setting a lower difficulty for earning shares, the pool measures the amount of work done by each miner. Each time a pool miner finds a block header hash that is equal to or less than the pool target, she proves she has done the hashing work to find that result. More importantly, the work to find shares contributes, in a statistically measurable way, to the overall effort to find a hash equal to or lower than the bitcoin network's target. Thousands of miners trying to find low-value hashes will eventually find one low enough to satisfy the bitcoin network target.

Let's return to the analogy of a dice game. If the dice players are throwing dice with a goal of throwing equal to or less than four (the overall network difficulty), a pool would set an easier target, counting how many times the pool players managed to throw equal to or less than eight. When pool players throw equal to or less than eight (the pool share target) but higher than four (higher than the overall network difficulty), they earn shares, but neither they nor the pool win the game because they don't achieve the game target (equal to or less than four). The pool players will achieve the easier pool target much more often, earning them shares very regularly, even when they don't achieve the harder target of winning the game. Every now and then, one of the pool players will throw a combined dice throw of equal to or less than four, the pool player wins a share and the whole pool wins the game. Then, the earnings can be distributed to the pool players based on the amount of shares each one has earned. Even though the target of eight-or-less wasn't winning, it was a fair way to measure dice throws for the players, and it occasionally produces a four-or-less throw.

Similarly, a mining pool will set a (higher and easier) pool target that will ensure that an individual pool miner can find block header hashes that are equal to or less than the pool target often, earning shares. Every now and then, one of these attempts will produce a block header hash that is equal to or less than the bitcoin network target, making it a valid block and the whole pool wins.

Validating Blocks: Mining Pools | Saylor Academy (2024)

FAQs

How do miners validate blocks? ›

Proof-of-Work

Consensus is achieved after the miner adds the block to the blockchain, and the rest of the network validates it using the hashes (reaching consensus). This doesn't require much energy or computational power because each mining node also does this while mining the latest block.

What you get for validating a block? ›

Creating and submitting blocks: Once a validator successfully mines a new block and achieves consensus, the block is added to the blockchain. In the case of Bitcoin, miners are rewarded with newly created Bitcoins, which serve as block rewards. The process must be completed within the required timeframe.

How do you validate blocks? ›

Validating Blocks
  1. The block data structure is syntactically valid.
  2. The block header hash is equal to or less than the target (enforces the Proof-of-Work)
  3. The block timestamp is less than two hours in the future (allowing for time errors)
  4. The block size is within acceptable limits.

What makes a block valid? ›

On the Bitcoin blockchain, a block is verified by miners, who compete against each other to verify the transactions and solve the hash, which creates another block. On the Ethereum blockchain, a block is validated by randomly selected nodes, which is must faster because there is no competition.

How long does it take to validate a Bitcoin block? ›

Bitcoin transactions are generally considered completed once they have been confirmed in 1-6 blocks. As each block on average takes 10 minutes to be confirmed into a new block by the Bitcoin Mining process, this means your transaction will take anywhere from 0-60 minutes on average to be completed.

Which layer is responsible for validating the blocks? ›

The consensus layer validates blocks in blockchain. It often uses Proof of Work (PoW), where nodes compete to solve cryptographic puzzles. In PoS (Proof of Stake), validators are randomly chosen.

What is validation block? ›

Use the Validation block in the App Design to prevent or warn the end user from entering Invalid or Duplicate Inputs.

What makes a block invalid? ›

Causes of Invalid Blocks

Invalid Transactions: A block becomes invalid if it includes transactions that are not valid according to Bitcoin's rules. This can happen if a transaction is malformed, tries to spend more bitcoins than available in the sender's wallet, or is not properly signed.

How are miners rewarded for validating Bitcoin transactions? ›

Miners receive two types of rewards for mining: new coins created with each new block, and transaction fees from all the transactions included in the block. To earn this reward, the miners compete to solve a difficult mathematical problem based on a cryptographic hash algorithm.

How are Bitcoin blocks confirmed? ›

The miner solves a special mathematical puzzle called a proof of work. After that, the Bitcoin Network confirms your block and adds it to the blockchain. Each new block added to the blockchain is another confirmation for your transaction.

How do I verify Bitcoin mining? ›

How does mining confirm transactions? Mining transactions are validated digitally on the bitcoin network you use and add to the blockchain ledger. It is done by solving complex cryptographic hash puzzles to verify blocks of transactions updated on the decentralized blockchain ledger.

How validation is done in blockchain? ›

In PoW blockchains like Bitcoin, miners validate and add transactions to the blockchain through mining, while other nodes act as validators by verifying transactions and blocks without contributing to the mining process, whereas validators in stake-based systems approve transactions and create blocks based on their ...

How do mining pools verify work? ›

By setting a lower difficulty for earning shares, the pool measures the amount of work done by each miner. Each time a pool miner finds a block header hash that is equal to or less than the pool target, she proves she has done the hashing work to find that result.

How are blocks validated in proof-of-stake? ›

Understanding Proof-of-Stake (PoS)

1 Blocks are validated by multiple validators, and when a specific number of validators verify that the block is accurate, it is finalized and closed. Different proof-of-stake mechanisms may use various methods to reach a consensus.

How does Ethereum validate a block and transaction? ›

Mining nodes actively participate in the consensus process, select valid transactions from the transaction pool, and include them in a new block. These mining nodes verify the transactions, execute any associated smart contract code, and update the state of the Ethereum blockchain accordingly.

Top Articles
Latest Posts
Article information

Author: Dr. Pierre Goyette

Last Updated:

Views: 5845

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Dr. Pierre Goyette

Birthday: 1998-01-29

Address: Apt. 611 3357 Yong Plain, West Audra, IL 70053

Phone: +5819954278378

Job: Construction Director

Hobby: Embroidery, Creative writing, Shopping, Driving, Stand-up comedy, Coffee roasting, Scrapbooking

Introduction: My name is Dr. Pierre Goyette, I am a enchanting, powerful, jolly, rich, graceful, colorful, zany person who loves writing and wants to share my knowledge and understanding with you.