RSA Algorithm in Cryptography - GeeksforGeeks (2024)

Last Updated : 11 Sep, 2024

Summarize

Comments

Improve

RSA algorithm is an asymmetric cryptography algorithm. Asymmetric means that it works on two different keys i.e. Public Key and Private Key. As the name describes the Public Key is given to everyone and the Private key is kept private.

An example of asymmetric cryptography:

  1. A client (for example browser) sends its public key to the server and requests some data.
  2. The server encrypts the data using the client’s public key and sends the encrypted data.
  3. The client receives this data and decrypts it.

Since this is asymmetric, nobody else except the browser can decrypt the data even if a third party has the public key of the browser.

The idea! The idea of RSA is based on the fact that it is difficult to factorize a large integer. The public key consists of two numbers where one number is a multiplication of two large prime numbers. And private key is also derived from the same two prime numbers. So if somebody can factorize the large number, the private key is compromised. Therefore encryption strength lies in the key size and if we double or triple the key size, the strength of encryption increases exponentially. RSA keys can be typically 1024 or 2048 bits long, but experts believe that 1024-bit keys could be broken shortly. But till now it seems to be an infeasible task.

Let us learn the mechanism behind the RSA algorithm : >> Generating Public Key:

Select two prime no's. Suppose P = 53 and Q = 59.
Now First part of the Public key : n = P*Q = 3127.
We also need a small exponent say e :
But e Must be
An integer.
Not be a factor of Φ(n).
1 < e < Φ(n) [Φ(n) is discussed below],
Let us now consider it to be equal to 3.
Our Public Key is made of n and e

>> Generating Private Key:

We need to calculate Φ(n) :
Such that Φ(n) = (P-1)(Q-1)
so, Φ(n) = 3016
Now calculate Private Key, d :
d = (k*Φ(n) + 1) / e for some integer k
For k = 2, value of d is 2011.

Now we are ready with our – Public Key ( n = 3127 and e = 3) and Private Key(d = 2011) Now we will encrypt “HI”:

Convert letters to numbers : H = 8 and I = 9
Thus Encrypted Data c = (89e)mod n
Thus our Encrypted Data comes out to be 1394
Now we will decrypt 1394 :
Decrypted Data = (cd)mod n
Thus our Encrypted Data comes out to be 89
8 = H and I = 9 i.e. "HI".

Below is the implementation of the RSA algorithm for

Method 1: Encrypting and decrypting small numeral values:

C++
// C program for RSA asymmetric cryptographic// algorithm. For demonstration values are// relatively small compared to practical// application#include <bits/stdc++.h>using namespace std;// Returns gcd of a and bint gcd(int a, int h){ int temp; while (1) { temp = a % h; if (temp == 0) return h; a = h; h = temp; }}// Code to demonstrate RSA algorithmint main(){ // Two random prime numbers double p = 3; double q = 7; // First part of public key: double n = p * q; // Finding other part of public key. // e stands for encrypt double e = 2; double phi = (p - 1) * (q - 1); while (e < phi) { // e must be co-prime to phi and // smaller than phi. if (gcd(e, phi) == 1) break; else e++; } // Private key (d stands for decrypt) // choosing d such that it satisfies // d*e = 1 + k * totient int k = 2; // A constant value double d = (1 + (k * phi)) / e; // Message to be encrypted double msg = 12; printf("Message data = %lf", msg); // Encryption c = (msg ^ e) % n double c = pow(msg, e); c = fmod(c, n); printf("\nEncrypted data = %lf", c); // Decryption m = (c ^ d) % n double m = pow(c, d); m = fmod(m, n); printf("\nOriginal Message Sent = %lf", m); return 0;}// This code is contributed by Akash Sharan.
Java
/*package whatever //do not write package name here */import java.io.*;import java.math.*;import java.util.*;/* * Java program for RSA asymmetric cryptographic algorithm. * For demonstration, values are * relatively small compared to practical application */public class GFG { public static double gcd(double a, double h) { /* * This function returns the gcd or greatest common * divisor */ double temp; while (true) { temp = a % h; if (temp == 0) return h; a = h; h = temp; } } public static void main(String[] args) { double p = 3; double q = 7; // Stores the first part of public key: double n = p * q; // Finding the other part of public key. // double e stands for encrypt double e = 2; double phi = (p - 1) * (q - 1); while (e < phi) { /* * e must be co-prime to phi and * smaller than phi. */ if (gcd(e, phi) == 1) break; else e++; } int k = 2; // A constant value double d = (1 + (k * phi)) / e; // Message to be encrypted double msg = 12; System.out.println("Message data = " + msg); // Encryption c = (msg ^ e) % n double c = Math.pow(msg, e); c = c % n; System.out.println("Encrypted data = " + c); // Decryption m = (c ^ d) % n double m = Math.pow(c, d); m = m % n; System.out.println("Original Message Sent = " + m); }}// This code is contributed by Pranay Arora.
Python
# Python for RSA asymmetric cryptographic algorithm.# For demonstration, values are# relatively small compared to practical applicationimport mathdef gcd(a, h): temp = 0 while(1): temp = a % h if (temp == 0): return h a = h h = tempp = 3q = 7n = p*qe = 2phi = (p-1)*(q-1)while (e < phi): # e must be co-prime to phi and # smaller than phi. if(gcd(e, phi) == 1): break else: e = e+1# Private key (d stands for decrypt)# choosing d such that it satisfies# d*e = 1 + k * totientk = 2d = (1 + (k*phi))/e# Message to be encryptedmsg = 12.0print("Message data = ", msg)# Encryption c = (msg ^ e) % nc = pow(msg, e)c = math.fmod(c, n)print("Encrypted data = ", c)# Decryption m = (c ^ d) % nm = pow(c, d)m = math.fmod(m, n)print("Original Message Sent = ", m)# This code is contributed by Pranay Arora.
C#
/* * C# program for RSA asymmetric cryptographic algorithm. * For demonstration, values are * relatively small compared to practical application */using System;public class GFG { public static double gcd(double a, double h) { /* * This function returns the gcd or greatest common * divisor */ double temp; while (true) { temp = a % h; if (temp == 0) return h; a = h; h = temp; } } static void Main() { double p = 3; double q = 7; // Stores the first part of public key: double n = p * q; // Finding the other part of public key. // double e stands for encrypt double e = 2; double phi = (p - 1) * (q - 1); while (e < phi) { /* * e must be co-prime to phi and * smaller than phi. */ if (gcd(e, phi) == 1) break; else e++; } int k = 2; // A constant value double d = (1 + (k * phi)) / e; // Message to be encrypted double msg = 12; Console.WriteLine("Message data = " + String.Format("{0:F6}", msg)); // Encryption c = (msg ^ e) % n double c = Math.Pow(msg, e); c = c % n; Console.WriteLine("Encrypted data = " + String.Format("{0:F6}", c)); // Decryption m = (c ^ d) % n double m = Math.Pow(c, d); m = m % n; Console.WriteLine("Original Message Sent = " + String.Format("{0:F6}", m)); }}// This code is contributed by Pranay Arora.
Javascript
//GFG//Javascript code for this approachfunction gcd(a, h) { /* * This function returns the gcd or greatest common * divisor */ let temp; while (true) { temp = a % h; if (temp == 0) return h; a = h; h = temp; }}let p = 3;let q = 7;// Stores the first part of public key:let n = p * q;// Finding the other part of public key.// e stands for encryptlet e = 2;let phi = (p - 1) * (q - 1);while (e < phi) { /* * e must be co-prime to phi and * smaller than phi. */ if (gcd(e, phi) == 1) break; else e++;}let k = 2; // A constant valuelet d = (1 + (k * phi)) / e;// Message to be encryptedlet msg = 12;console.log("Message data = " + msg);// Encryption c = (msg ^ e) % nlet c = Math.pow(msg, e);c = c % n;console.log("Encrypted data = " + c);// Decryption m = (c ^ d) % nlet m = Math.pow(c, d);m = m % n;console.log("Original Message Sent = " + m);//This code is written by Sundaram

Output

Message data = 12.000000Encrypted data = 3.000000Original Message Sent = 12.000000

Method 2: Encrypting and decrypting plain text messages containing alphabets and numbers using their ASCII value:

C++
#include <bits/stdc++.h>using namespace std;set<int> prime; // a set will be the collection of prime numbers, // where we can select random primes p and qint public_key;int private_key;int n;// we will run the function only once to fill the set of// prime numbersvoid primefiller(){ // method used to fill the primes set is seive of // eratosthenes(a method to collect prime numbers) vector<bool> seive(250, true); seive[0] = false; seive[1] = false; for (int i = 2; i < 250; i++) { for (int j = i * 2; j < 250; j += i) { seive[j] = false; } } // filling the prime numbers for (int i = 0; i < seive.size(); i++) { if (seive[i]) prime.insert(i); }}// picking a random prime number and erasing that prime// number from list because p!=qint pickrandomprime(){ int k = rand() % prime.size(); auto it = prime.begin(); while (k--) it++; int ret = *it; prime.erase(it); return ret;}void setkeys(){ int prime1 = pickrandomprime(); // first prime number int prime2 = pickrandomprime(); // second prime number // to check the prime numbers selected // cout<<prime1<<" "<<prime2<<endl; n = prime1 * prime2; int fi = (prime1 - 1) * (prime2 - 1); int e = 2; while (1) { if (__gcd(e, fi) == 1) break; e++; } // d = (k*Φ(n) + 1) / e for some integer k public_key = e; int d = 2; while (1) { if ((d * e) % fi == 1) break; d++; } private_key = d;}// to encrypt the given numberlong long int encrypt(double message){ int e = public_key; long long int encrpyted_text = 1; while (e--) { encrpyted_text *= message; encrpyted_text %= n; } return encrpyted_text;}// to decrypt the given numberlong long int decrypt(int encrpyted_text){ int d = private_key; long long int decrypted = 1; while (d--) { decrypted *= encrpyted_text; decrypted %= n; } return decrypted;}// first converting each character to its ASCII value and// then encoding it then decoding the number to get the// ASCII and converting it to charactervector<int> encoder(string message){ vector<int> form; // calling the encrypting function in encoding function for (auto& letter : message) form.push_back(encrypt((int)letter)); return form;}string decoder(vector<int> encoded){ string s; // calling the decrypting function decoding function for (auto& num : encoded) s += decrypt(num); return s;}int main(){ primefiller(); setkeys(); string message = "Test Message"; // uncomment below for manual input // cout<<"enter the message\n";getline(cin,message); // calling the encoding function vector<int> coded = encoder(message); cout << "Initial message:\n" << message; cout << "\n\nThe encoded message(encrypted by public " "key)\n"; for (auto& p : coded) cout << p; cout << "\n\nThe decoded message(decrypted by private " "key)\n"; cout << decoder(coded) << endl; return 0;}
Java
import java.util.ArrayList;import java.util.HashSet;import java.util.List;import java.util.Random;public class GFG { private static HashSet<Integer> prime = new HashSet<>(); private static Integer public_key = null; private static Integer private_key = null; private static Integer n = null; private static Random random = new Random(); public static void main(String[] args) { primeFiller(); setKeys(); String message = "Test Message"; // Uncomment below for manual input // System.out.println("Enter the message:"); // message = new Scanner(System.in).nextLine(); List<Integer> coded = encoder(message); System.out.println("Initial message:"); System.out.println(message); System.out.println( "\n\nThe encoded message (encrypted by public key)\n"); System.out.println( String.join("", coded.stream() .map(Object::toString) .toArray(String[] ::new))); System.out.println( "\n\nThe decoded message (decrypted by public key)\n"); System.out.println(decoder(coded)); } public static void primeFiller() { boolean[] sieve = new boolean[250]; for (int i = 0; i < 250; i++) { sieve[i] = true; } sieve[0] = false; sieve[1] = false; for (int i = 2; i < 250; i++) { for (int j = i * 2; j < 250; j += i) { sieve[j] = false; } } for (int i = 0; i < sieve.length; i++) { if (sieve[i]) { prime.add(i); } } } public static int pickRandomPrime() { int k = random.nextInt(prime.size()); List<Integer> primeList = new ArrayList<>(prime); int ret = primeList.get(k); prime.remove(ret); return ret; } public static void setKeys() { int prime1 = pickRandomPrime(); int prime2 = pickRandomPrime(); n = prime1 * prime2; int fi = (prime1 - 1) * (prime2 - 1); int e = 2; while (true) { if (gcd(e, fi) == 1) { break; } e += 1; } public_key = e; int d = 2; while (true) { if ((d * e) % fi == 1) { break; } d += 1; } private_key = d; } public static int encrypt(int message) { int e = public_key; int encrypted_text = 1; while (e > 0) { encrypted_text *= message; encrypted_text %= n; e -= 1; } return encrypted_text; } public static int decrypt(int encrypted_text) { int d = private_key; int decrypted = 1; while (d > 0) { decrypted *= encrypted_text; decrypted %= n; d -= 1; } return decrypted; } public static int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } public static List<Integer> encoder(String message) { List<Integer> encoded = new ArrayList<>(); for (char letter : message.toCharArray()) { encoded.add(encrypt((int)letter)); } return encoded; } public static String decoder(List<Integer> encoded) { StringBuilder s = new StringBuilder(); for (int num : encoded) { s.append((char)decrypt(num)); } return s.toString(); }}
Python
import randomimport math# A set will be the collection of prime numbers,# where we can select random primes p and qprime = set()public_key = Noneprivate_key = Nonen = None# We will run the function only once to fill the set of# prime numbersdef primefiller(): # Method used to fill the primes set is Sieve of # Eratosthenes (a method to collect prime numbers) seive = [True] * 250 seive[0] = False seive[1] = False for i in range(2, 250): for j in range(i * 2, 250, i): seive[j] = False # Filling the prime numbers for i in range(len(seive)): if seive[i]: prime.add(i)# Picking a random prime number and erasing that prime# number from list because p!=qdef pickrandomprime(): global prime k = random.randint(0, len(prime) - 1) it = iter(prime) for _ in range(k): next(it) ret = next(it) prime.remove(ret) return retdef setkeys(): global public_key, private_key, n prime1 = pickrandomprime() # First prime number prime2 = pickrandomprime() # Second prime number n = prime1 * prime2 fi = (prime1 - 1) * (prime2 - 1) e = 2 while True: if math.gcd(e, fi) == 1: break e += 1 # d = (k*Φ(n) + 1) / e for some integer k public_key = e d = 2 while True: if (d * e) % fi == 1: break d += 1 private_key = d# To encrypt the given numberdef encrypt(message): global public_key, n e = public_key encrypted_text = 1 while e > 0: encrypted_text *= message encrypted_text %= n e -= 1 return encrypted_text# To decrypt the given numberdef decrypt(encrypted_text): global private_key, n d = private_key decrypted = 1 while d > 0: decrypted *= encrypted_text decrypted %= n d -= 1 return decrypted# First converting each character to its ASCII value and# then encoding it then decoding the number to get the# ASCII and converting it to characterdef encoder(message): encoded = [] # Calling the encrypting function in encoding function for letter in message: encoded.append(encrypt(ord(letter))) return encodeddef decoder(encoded): s = '' # Calling the decrypting function decoding function for num in encoded: s += chr(decrypt(num)) return sif __name__ == '__main__': primefiller() setkeys() message = "Test Message" # Uncomment below for manual input # message = input("Enter the message\n") # Calling the encoding function coded = encoder(message) print("Initial message:") print(message) print("\n\nThe encoded message(encrypted by public key)\n") print(''.join(str(p) for p in coded)) print("\n\nThe decoded message(decrypted by public key)\n") print(''.join(str(p) for p in decoder(coded))) 
C#
using System;using System.Collections.Generic;public class GFG{ private static HashSet<int> prime = new HashSet<int>(); private static int? public_key = null; private static int? private_key = null; private static int? n = null; private static Random random = new Random(); public static void Main() { PrimeFiller(); SetKeys(); string message = "Test Message"; // Uncomment below for manual input // Console.WriteLine("Enter the message:"); // message = Console.ReadLine(); List<int> coded = Encoder(message); Console.WriteLine("Initial message:"); Console.WriteLine(message); Console.WriteLine("\n\nThe encoded message (encrypted by public key)\n"); Console.WriteLine(string.Join("", coded)); Console.WriteLine("\n\nThe decoded message (decrypted by public key)\n"); Console.WriteLine(Decoder(coded)); } public static void PrimeFiller() { bool[] sieve = new bool[250]; for (int i = 0; i < 250; i++) { sieve[i] = true; } sieve[0] = false; sieve[1] = false; for (int i = 2; i < 250; i++) { for (int j = i * 2; j < 250; j += i) { sieve[j] = false; } } for (int i = 0; i < sieve.Length; i++) { if (sieve[i]) { prime.Add(i); } } } public static int PickRandomPrime() { int k = random.Next(0, prime.Count - 1); var enumerator = prime.GetEnumerator(); for (int i = 0; i <= k; i++) { enumerator.MoveNext(); } int ret = enumerator.Current; prime.Remove(ret); return ret; } public static void SetKeys() { int prime1 = PickRandomPrime(); int prime2 = PickRandomPrime(); n = prime1 * prime2; int fi = (prime1 - 1) * (prime2 - 1); int e = 2; while (true) { if (GCD(e, fi) == 1) { break; } e += 1; } public_key = e; int d = 2; while (true) { if ((d * e) % fi == 1) { break; } d += 1; } private_key = d; } public static int Encrypt(int message) { int e = public_key.Value; int encrypted_text = 1; while (e > 0) { encrypted_text *= message; encrypted_text %= n.Value; e -= 1; } return encrypted_text; } public static int Decrypt(int encrypted_text) { int d = private_key.Value; int decrypted = 1; while (d > 0) { decrypted *= encrypted_text; decrypted %= n.Value; d -= 1; } return decrypted; } public static int GCD(int a, int b) { if (b == 0) { return a; } return GCD(b, a % b); } public static List<int> Encoder(string message) { List<int> encoded = new List<int>(); foreach (char letter in message) { encoded.Add(Encrypt((int)letter)); } return encoded; } public static string Decoder(List<int> encoded) { string s = ""; foreach (int num in encoded) { s += (char)Decrypt(num); } return s; } }

Output

Initial message:Test MessageThe encoded message(encrypted by public key)863312887135951593413927434912887135951359583051879012887The decoded message(decrypted by private key)Test Message

Implementation of RSA Cryptosystem using Primitive Roots in C++

we will implement a simple version of RSA using primitive roots.

Step 1: Generating Keys

  • To start, we need to generate two large prime numbers, p and q. These primes should be of roughly equal length and their product should be much larger than the message we want to encrypt.
  • We can generate the primes using any primality testing algorithm, such as the Miller-Rabin test. Once we have the two primes, we can compute their product n = p*q, which will be the modulus for our RSA system.
  • Next, we need to choose an integer e such that 1 < e < phi(n) and gcd(e, phi(n)) = 1, where phi(n) = (p-1)*(q-1) is Euler’s totient function. This value of e will be the public key exponent.
  • To compute the private key exponent d, we need to find an integer d such that d*e = 1 (mod phi(n)). This can be done using the extended Euclidean algorithm.
  • Our public key is (n, e) and our private key is (n, d).

Step 2: Encryption

  • To encrypt a message m, we need to convert it to an integer between 0 and n-1. This can be done using a reversible encoding scheme, such as ASCII or UTF-8.
  • Once we have the integer representation of the message, we compute the ciphertext c as c = m^e (mod n). This can be done efficiently using modular exponentiation algorithms, such as binary exponentiation.

Step 3: Decryption

  • To decrypt the ciphertext c, we compute the plaintext m as m = c^d (mod n). Again, we can use modular exponentiation algorithms to do this efficiently.

Step 4: Example

  • Let’s walk through an example using small values to illustrate how the RSA cryptosystem works.
  • Suppose we choose p = 11 and q = 13, giving us n = 143 and phi(n) = 120. We can choose e = 7, since gcd(7, 120) = 1. Using the extended Euclidean algorithm, we can compute d = 103, since 7*103 = 1 (mod 120).
  • Our public key is (143, 7) and our private key is (143, 103).
  • Suppose we want to encrypt the message “HELLO”. We can convert this to the integer 726564766, using ASCII encoding. Using the public key, we compute the ciphertext as c = 726564766^7 (mod 143) = 32.
  • To decrypt the ciphertext, we use the private key to compute m = 32^103 (mod 143) = 726564766, which is the original message.

Example Code:

C++
#include <iostream>#include <cmath>using namespace std;// calculate phi(n) for a given number nint phi(int n) { int result = n; for (int i = 2; i <= sqrt(n); i++) { if (n % i == 0) { while (n % i == 0) { n /= i; } result -= result / i; } } if (n > 1) { result -= result / n; } return result;}// calculate gcd(a, b) using the Euclidean algorithmint gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b);}// calculate a^b mod m using modular exponentiationint modpow(int a, int b, int m) { int result = 1; while (b > 0) { if (b & 1) { result = (result * a) % m; } a = (a * a) % m; b >>= 1; } return result;}// generate a random primitive root modulo nint generatePrimitiveRoot(int n) { int phiN = phi(n); int factors[phiN], numFactors = 0; int temp = phiN; // get all prime factors of phi(n) for (int i = 2; i <= sqrt(temp); i++) { if (temp % i == 0) { factors[numFactors++] = i; while (temp % i == 0) { temp /= i; } } } if (temp > 1) { factors[numFactors++] = temp; } // test possible primitive roots for (int i = 2; i <= n; i++) { bool isRoot = true; for (int j = 0; j < numFactors; j++) { if (modpow(i, phiN / factors[j], n) == 1) { isRoot = false; break; } } if (isRoot) { return i; } } return -1;}int main() { int p = 11; int q = 13; int n = p * q; int phiN = (p - 1) * (q - 1); // phi(n) = 120 int e = 7; // gcd(7, 120) = 1  int d = 0; while ((d * e) % phiN != 1) { d++; }  cout << "Public key: {" << e << ", " << n << "}" << endl; cout << "Private key: {" << d << ", " << n << "}" << endl; int m = 11; int c = modpow(m, e, n); int decrypted = modpow(c, d, n); cout << "Original message: " << m << endl; cout << "Encrypted message: " << c << endl; cout << "Decrypted message: " << decrypted << endl; return 0;}// This code is modified by Susobhan Akhuli
Java
import java.util.*;public class GFG { // calculate phi(n) for a given number n static int phi(int n) { int result = n; for (int i = 2; i <= Math.sqrt(n); i++) { if (n % i == 0) { while (n % i == 0) { n /= i; } result -= result / i; } } if (n > 1) { result -= result / n; } return result; } // calculate gcd(a, b) using the Euclidean algorithm static int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } // calculate a^b mod m using modular exponentiation static int modpow(int a, int b, int m) { int result = 1; while (b > 0) { if ((b & 1) == 1) { result = (result * a) % m; } a = (a * a) % m; b >>= 1; } return result; } // generate a random primitive root modulo n static int generatePrimitiveRoot(int n) { int phiN = phi(n); List<Integer> factors = new ArrayList<>(); int temp = phiN; // get all prime factors of phi(n) for (int i = 2; i <= Math.sqrt(temp); i++) { if (temp % i == 0) { factors.add(i); while (temp % i == 0) { temp /= i; } } } if (temp > 1) { factors.add(temp); } // test possible primitive roots for (int i = 2; i <= n; i++) { boolean isRoot = true; for (int factor : factors) { if (modpow(i, phiN / factor, n) == 1) { isRoot = false; break; } } if (isRoot) { return i; } } return -1; } public static void main(String[] args) { int p = 11; int q = 13; int n = p * q; int phiN = (p - 1) * (q - 1); // phi(n) = 120 int e = 7; // gcd(7, 120) = 1  int d = 0; while ((d * e) % phiN != 1) { d++; } System.out.println("Public key: {" + e + ", " + n + "}"); System.out.println("Private key: {" + d + ", " + n + "}"); int m = 11; int c = modpow(m, e, n); int decrypted = modpow(c, d, n); System.out.println("Original message: " + m); System.out.println("Encrypted message: " + c); System.out.println("Decrypted message: " + decrypted); }}// This code is contributed by Susobhan Akhuli

Output

Public key: {7, 143}Private key: {103, 143}Original message: 11Encrypted message: 132Decrypted message: 11

Advantages

  • Security: RSA algorithm is considered to be very secure and is widely used for secure data transmission.
  • Public-key cryptography: RSA algorithm is a public-key cryptography algorithm, which means that it uses two different keys for encryption and decryption. The public key is used to encrypt the data, while the private key is used to decrypt the data.
  • Key exchange: RSA algorithm can be used for secure key exchange, which means that two parties can exchange a secret key without actually sending the key over the network.
  • Digital signatures: RSA algorithm can be used for digital signatures, which means that a sender can sign a message using their private key, and the receiver can verify the signature using the sender’s public key.
  • Speed: The RSA technique is suited for usage in real-time applications since it is quite quick and effective.
  • Widely used: Online banking, e-commerce, and secure communications are just a few fields and applications where the RSA algorithm is extensively developed.

Disadvantages

  • Slow processing speed: RSA algorithm is slower than other encryption algorithms, especially when dealing with large amounts of data.
  • Large key size: RSA algorithm requires large key sizes to be secure, which means that it requires more computational resources and storage space.
  • Vulnerability to side-channel attacks: RSA algorithm is vulnerable to side-channel attacks, which means an attacker can use information leaked through side channels such as power consumption, electromagnetic radiation, and timing analysis to extract the private key.
  • Limited use in some applications: RSA algorithm is not suitable for some applications, such as those that require constant encryption and decryption of large amounts of data, due to its slow processing speed.
  • Complexity: The RSA algorithm is a sophisticated mathematical technique that some individuals may find challenging to comprehend and use.
  • Key Management: The secure administration of the private key is necessary for the RSA algorithm, although in some cases this can be difficult.
  • Vulnerability to Quantum Computing: Quantum computers have the ability to attack the RSA algorithm, potentially decrypting the data.

Conclusion

In conclusion, while RSA offers significant advantages like security, public-key cryptography, key exchange, digital signatures, speed, and widespread use, it’s essential to acknowledge its limitations. The algorithm’s computational intensity, particularly with larger key sizes, can impact performance, and vulnerabilities like side-channel attacks remain a concern.

Frequently Asked Questions on RSA Algorithm in Cryptography – FAQs

What is the RSA algorithm, and how does it work?

RSA is an asymmetric encryption algorithm that uses public and private keys to secure data. It relies on the mathematical challenge of factoring large numbers, making it computationally difficult for unauthorized parties to decrypt messages.

What are the key components of the RSA algorithm?

The key components include:

  • Public Key: Used for encryption and shared openly.
  • Private Key: Used for decryption and kept secret.
  • Modulus (n): The product of two large prime numbers.
  • Public Exponent (e): A number coprime to phi(n).
  • Private Exponent (d): The modular multiplicative inverse of e.

What are the primary applications of RSA?

RSA finds applications in:

  • Secure Data Transmission: Encrypting data for confidentiality.
  • Key Exchange: Establishing shared secret keys.
  • Digital Signatures: Verifying the authenticity and integrity of messages.

Is RSA vulnerable to quantum computing?

Yes, RSA is vulnerable to quantum computing attacks, as quantum computers could efficiently factor large numbers, undermining the algorithm’s security. However, ongoing research aims to develop quantum-resistant cryptographic algorithms.

How can I ensure the security of RSA encryption?

To enhance RSA security:

  • Use Strong Keys: Employ sufficiently large key sizes (e.g., 2048 bits or higher).
  • Protect Private Keys: Store private keys securely and avoid sharing them.
  • Implement Side-Channel Attack Mitigations: Use techniques to reduce information leakage.
  • Stay Informed: Keep updated on advancements in cryptography and vulnerabilities.


RSA Algorithm in Cryptography - GeeksforGeeks (1)

GeeksforGeeks

RSA Algorithm in Cryptography - GeeksforGeeks (2)

Improve

Previous Article

Difference between AES and DES ciphers

Next Article

Implementation of Diffie-Hellman Algorithm

Please Login to comment...

RSA Algorithm in Cryptography - GeeksforGeeks (2024)
Top Articles
2-2-3 Work Schedule: Understanding Its Rise and Benefits - Shiftbase
Coping with stingy partner
Frank Lloyd Wright, born 150 years ago, still fascinates
Flixtor The Meg
Hotels Near 500 W Sunshine St Springfield Mo 65807
2022 Apple Trade P36
Weather In Moon Township 10 Days
Anki Fsrs
Caroline Cps.powerschool.com
Obituary | Shawn Alexander | Russell Funeral Home, Inc.
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
Wgu Admissions Login
Uhcs Patient Wallet
Aldi Süd Prospekt ᐅ Aktuelle Angebote online blättern
List of all the Castle's Secret Stars - Super Mario 64 Guide - IGN
Honda cb750 cbx z1 Kawasaki kz900 h2 kz 900 Harley Davidson BMW Indian - wanted - by dealer - sale - craigslist
Csi Tv Series Wiki
Site : Storagealamogordo.com Easy Call
Caledonia - a simple love song to Scotland
Teacup Yorkie For Sale Up To $400 In South Carolina
Mc Donald's Bruck - Fast-Food-Restaurant
Wbiw Weather Watchers
Exl8000 Generator Battery
Vivaciousveteran
Https E22 Ultipro Com Login Aspx
The Banshees Of Inisherin Showtimes Near Broadway Metro
My Reading Manga Gay
Happy Shuttle Cancun Review
Craigslist Middletown Ohio
Craigslistodessa
Garrison Blacksmith's Bench
Exploring The Whimsical World Of JellybeansBrains Only
Ippa 番号
Grapes And Hops Festival Jamestown Ny
Directions To 401 East Chestnut Street Louisville Kentucky
Chuze Fitness La Verne Reviews
Vivek Flowers Chantilly
How To Get Soul Reaper Knife In Critical Legends
Trap Candy Strain Leafly
craigslist: modesto jobs, apartments, for sale, services, community, and events
Live Delta Flight Status - FlightAware
Executive Lounge - Alle Informationen zu der Lounge | reisetopia Basics
Citibank Branch Locations In North Carolina
Craigslist Com St Cloud Mn
Sound Of Freedom Showtimes Near Amc Mountainside 10
Doe mee met ons loyaliteitsprogramma | Victoria Club
Zipformsonline Plus Login
Windy Bee Favor
Plasma Donation Greensburg Pa
What Is The Gcf Of 44J5K4 And 121J2K6
Craigslist Farm And Garden Missoula
Equinox Great Neck Class Schedule
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 6045

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.